如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)请用画树状图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;
(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.
学习了统计知识后,小刚就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:求该班共有多少名学生?
在图(1)中,将表示“步行”的部分补充完整.
在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数.
如果全年级共500名同学,请你估算全年级步行上学的学生人数.
先化简,然后从
,1,-1中选取一个你认为合适的数作为x的值代入求值.
如图1,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.当PQ∥AD时, x的值等于;
如图2,线段PQ的垂直平分线EF与BC边相交于点E,连接EP、EQ,设BE= y,求y关于x的函数关系式;
在问题(2)中,设△EPQ的面积为S,求S关于x的函数关系式,并求当x取何值时,S的值最小,最小值是多少?
如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;
如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是.
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,于点E,DA平分
.
试说明AE是⊙O的切线;
如果AB= 4,AE=2,求⊙O的半径.