已知函数的图像过点
(Ⅰ)求函数的最小正周期以及对称中心坐标;
(Ⅱ)内角
的对边分别为
,若
,
,且
,
试判断的形状,并说明理由。
已知二次函数满足条件:
①;②
的最小值为
。
(1)求函数的解析式;
(2)设数列的前
项积为
,且
,求数列
的通项公式;
(3)在(2)的条件下,若是
与
的等差中项,试问数列
中第几项的值最小?求出这个最小值。
如图,有两条相交成角的直路
,交点为
,甲、乙分别在
上,起初甲离
点
,乙离
点
,后来甲沿
的方向,乙沿
的方向,同时以
的速度步行。
(1)起初两人的距离是多少?
(2)小时后两人的距离是多少?
(3)什么时候两人的距离最短,并求出最短距离。
已知数列的前
项和
,设数列
满足
,
(1)求数列的通项公式;
(2)求数列的前
项和
;
(3)设,求
.
在中,角
所对的边分别是
,且
(1)求角;
(2)若,试求
的最小值.
已知,
, 当k为何值时:
(1)与
垂直?
(2)与
平行? 是同向还是反向?
(3)试用表示
。