已知数列中,
,
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和
;
(Ⅲ)(理科)若存在,使得
成立,求实数
的最小值。
已知函数.
(Ⅰ) 讨论的奇偶性;
(Ⅱ)判断在
上的单调性并用定义证明.
已知函数(其中
)的周期为
,其图象上一个最高点为
.
(Ⅰ) 求的解析式;
(Ⅱ)当时,求
的最值及相应的
的值.
已知向量和
满足
,
,
与
的夹角为
,求
已知函数(
∈R且
),
.
(Ⅰ)若,且函数
的值域为[0, +
),求
的解析式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2 , 2 ]时,是单调函数,求实数k的取值范围;
(Ⅲ)设,
, 且
是偶函数,判断
能否大于零?
(满分16分)
某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间
(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数
(
)的图象,且
是常数.
(1)写出服药后y与x的函数关系式;
(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)