游客
题文

.(本题12分)
已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)

(1)求抛物线的解析式;
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧
且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y
轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

长江中下游地区特大旱情发生后,全国人民抗旱救灾,众志成城。市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型



汽车运载量(吨/辆)
5
8
10
汽车运费(元/辆)
400
500
600

(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节省运费,温州市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?

如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF(不再添加其它线段,不再标注或使用其他字母),并说明理由.

(1)你添加的条件是:
(2)理由:

图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.
(1)观察图②, 阴影部分的面积为_______________;请你写出三个代数式(m+n) 2
(m-n) 2、mn之间的等量关系是____________________________________;
(2)若x+y=7,xy=10,则(x-y) 2=_________________;
(3)实际上有许多代数恒等式可以用图形的面积来表示.
如图③,它表示了_______________________________________________.
(4)试画出一个几何图形,使它的面积能表示(m+n)(3m+n)=3m2+4mn+n2

如图,在正方形网格上的一个△ABC.

(1)作△ABC关于直线MN的对称图形(不写作法);
(2)以P为一个顶点作与△ABC全等的三角形(规定点P与
点B对应,另两顶点都在图中网格交点处),则可作出
个三角形.

如图,在Rt△ABC中,∠C=90°,BC=6 cm,CA=8 cm,动点P从点C出
发,以每秒2 cm的速度沿CA、AB运动到点B,则从C点出发多少秒时,可使
SBCPSABC

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号