在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分别是AD、DC的中点.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.
(本小题满分10分)
用平行于四面体的一组对棱
、
的平面截此四面体(如图).
(1)求证:所得截面是平行四边形;
(2)如果.求证:四边形
的周长为定值.
(本小题满分12分)
已知函数.
(I)若,求函数
的极值;
(II)若对任意的,都有
成立,求
的取值范围.
(本小题满分12分)
已知中心在原点,焦点在轴上的椭圆C的离心率为
,且经过点
,过点P(2,1)的直线
与椭圆C相交于不同的两点A、B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存直线,满足
?
若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分12分)
设函数
.
(Ⅰ)求的最小值
;
(Ⅱ)若对
恒成立,求实数
的取值范围.
(本小题满分12分)已知椭圆短轴
的一个端点
,离心率
.过
作直线
与椭圆交于另一点
,与
轴交于点
(
不同于原点
),点
关于
轴的对称点为
,直线
交
轴于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.