已知直线的右焦点F,且交椭圆C于A,B两点.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对椭圆C,若直线L交y轴于点M,且,当m变化时,求
的值.
求证:
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
⑴判断BE是否平分∠ABC,并说明理由;
⑵若AE=6,BE=8,求EF的长.
在直径是的半圆上有两点
,设
与
的交点是
.
求证:
已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
⑴求动圆圆心P的轨迹方程;
⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.
已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
⑴求动圆圆心P的轨迹方程;
⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.