已知四个正实数前三个数成等差数列,后三个数成等比数列,第一个与第三个的和为8,第二个与第四个的积为36.
(Ⅰ) 求此四数;
(Ⅱ)若前三数为等差数列的前三项,后三数为等比数列
的前三项,令
,求数列
的前
项和
.
本题共有2个小题,第1小题满分6分,第2小题满分8分.
若函数,如果存在给定的实数对
,使得
恒成立,则称为“
函数” .
(1). 判断下列函数,是否为“函数”,并说明理由;
①②
(2). 已知函数是一个“
函数”,求出所有的有序实数对
.
本题共有2个小题,第1小题满分7分,
第2小题满分7分 .
在中,角
、
、
的对边分别为
、
、
,
已知,
, 且
.
(1).求角的大小;
(2). 若,
面积为
,试判断
的形状,并说明理由.
已知在正四棱锥-
中(如图),高为1
,其体积为4
,求异面直线
与
所成角的大小.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知数列满足
前
项和为
,
.
(1)若数列满足
,试求数列
前3项的和
;
(2)(理)若数列满足
,试判断
是否为等比数列,并说明理由;
(文)若数列满足
,
,求证:
是为等比数列;
(3)当时,对任意
,不等式
都成立,求
的取值范围.
(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分5分.
已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数,试判断函数
在定义域D内的单调性,并证明;
(3)当(
,a是底数)时,函数值组成的集合为
,求实数
的值.