如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:;
(2)求正方形ABCD的边长;
(3)求直线与平面
所成角的正弦值.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)
(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;
(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求
的概率分布列和数学期望.
D.选修4-5:不等式选讲
已知实数满足
,求
的最小值;
C. 选修4-4:坐标系与参数方程
在极坐标系中,圆的极坐标方程为
,
(1)过极点的一条直线与圆相交于
,A两点,且∠
,求
的长.
B.选修4-2:矩阵与变换
已知矩阵A,其中
,若点
在矩阵A的变换下得到
.
(1)求实数的值;
(2)矩阵A的特征值和特征向量.
(本试卷共40分,考试时间30分钟)
21.(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
如图,是边长为
的正方形,以
为圆心,
为半径的圆弧与以
为直径的半⊙O交于点
,延长
交
于
.
(1)求证:是
的中点;(2)求线段
的长.