某地区的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格下跌.现有三种价格模拟函数:①;②
;③
.(以上三式中
均为常数,且
)
(1)为准确研究其价格走势,应选哪种价格模拟函数,为什么?
(2)若,
,求出所选函数
的解析式(注:函数的定义域是
).其中
表示4月1日,
表示5月1日,…,依此类推;
(3)为保护果农的收益,打算在价格下跌期间积极拓宽外销,请你预测该果品在哪几个月内价格下跌.
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格
(元/吨)之间的关系式为:
,且生产
吨的成本为
(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
已知函数,且
.
(I)求函数的解析式;
(II)求函数的单调区间和极值.
(本小题满分12分)
已知点列、
、…、
(n∈N)顺次为一次函数
图像上的点,点列
、
、…、
(n∈N)顺次为x轴正半轴上的点,其中
(0<a<1),对于任意n∈N,点
、
、
构成一个顶角的顶点为
的等腰三角形。
(1)数列的通项公式,并证明
是等差数列;
(2)证明为常数,并求出数列
的通项公式;
(3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。
(本小题满分8分)
设等差数列的前n项和为
,且
(c是常数,
N*),
.
(1)求c的值及的通项公式;
(2)证明:.
(本小题满分8分)
已知函数的最小正周期为
.
(1)求的值;
(2)求函数在区间
上的取值范围.