已知锐角三角形ABC中,
(Ⅰ)求证:;
(Ⅱ)设AB=3,求AB边上的高
本小题满分14分)已知中,点A、B的坐标分别为
,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线
交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
(本小题满分13分)已知数列中,
,前n项和为
(1)求数列的通项公式;
(2)设数列的前n项和为
,求满足不等式
的n值。
(本小题满分12分)某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
本小题满分12分)已知函数为偶函数,其图象上相邻的两个最低点间的距离为
。
(1)求的解析式;
(2)若,求
的值。
(本小题满分14分)已知函数
(1)求函数的单调递增区间;
(2)记函数的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①
;②曲线C在点M处的切线平行于直线AB,则称函数F(x)夺在“中值相依切线”,
试问:函数f(x)是否存在“中值相依切线”,请说明理由.