已知函数
(1)若的极值点,求实数a的值;
(2)若上为增函数,求实数a的取值范围;
(3)当有实根,求实数b的最大值。
已知等差数列的前
项和为
,且
,
,数列
满足:
,
,
(1)求数列、
的通项公式;
(2)设,
,证明:
在平面内,已知椭圆的两个焦点为
,椭圆的离心率为
,
点是椭圆上任意一点, 且
,
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形
,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
在△ABC中,分别是角A,B,C的对边,
,
.
(1)求角的值;
(2)若,求△ABC面积.
如图, 在直三棱柱中,
,
,
,点
是
的中点,
⑴ 求证:;
⑵ 求证: