某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的概率分布;
(2)求去执行任务的同学中有男有女的概率.
选修4-1:几何证明选讲
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.
(1)求证:;
(2)若AC=3,求的值.
已知椭圆:
的左、右顶点分别为
,
,
为短轴的端点,△
的面积为
,离心率是
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
(
为椭圆
的右焦点).
已知函数在
处的切线斜率为零.
(Ⅰ)求和
的值;
(Ⅱ)求证:在定义域内恒成立;
(Ⅲ) 若函数有最小值
,且
,求实数
的取值范围.
如图1,在边长为的正三角形
中,
,
,
分别为
,
,
上的点,且满足
.将△
沿
折起到△
的位置,使二面角
成直二面角,连结
,
.(如图2)
(Ⅰ)求证:⊥平面
;
(Ⅱ)求直线与平面
所成角的大小.
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为
;乙产品的一等品率为
,二等品率为
.生产
件甲产品,若是一等品,则获利
万元,若是二等品,则亏损
万元;生产
件乙产品,若是一等品,则获利
万元,若是二等品,则亏损
万
元.两种产品生产的质量相互独立.
(Ⅰ)设生产件甲产品和
件乙产品可获得的总利润为
(单位:万元),求
的分布列;
(Ⅱ)求生产件甲产品所获得的利润不少于
万元的概率.