已知函数,设
(1)求的单调区间;
(2)若以图象上任意一点
为切点的切线的斜率
恒成立,求实数的最小值;
(3)是否存在实数,使得函数
的图象与
的图象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说明理由。
已知函数,
(其中
且
).
(1)讨论函数的单调性;
(2)若,求函数
,
的最值;
(3)设函数,当
时,若对于任意的
,总存在唯一
的,使得
成立.试求
的取值范围.
已知椭圆的焦距为2,点
在椭圆
上,
求椭圆
的标准方程;
若过点
的直线与
中的椭圆交于不同的两点
(
在
、
之间);
试求与
面积之比的取值范围.
下图是一几何体的直观图、正(主)视图、侧(左)视图、俯视图
(1)若为
的中点,求证
:
平面
;
(2)求平面与平面
所成的二面角(锐角)的余弦值.
从装有个红球,
个白球和
个黑球的袋中逐一取球,已知
每个球被抽取的可能性相同.
(1)若抽取后又放回,抽取次,分别求恰有
次是红球的概率及抽全三种颜色球的概率;
(2)若抽取后不放回,求抽完红球所需次数不少于4次的概率;
(3)记红球、白球、黑球对应的号码为,现从盒中有放回地先后抽出的两球的号码分别记
为,记
,求随机变量
的分布列.
在一个特定的时间段内,以点为中心的
海里以内的海域被设为警戒水域,点
正北55海里处有一雷达观测站
,某时刻测得一艘匀速直线行驶的船只位于点
北偏东
且与点
相距
海里的位置
,经过40分钟又测得该船已经驶到点
北偏东
(其中
且与点
相距
海里的
处.
求该船的行驶速度;
若该船不改变航行
方向继续行驶,判断它是否会进入警戒线水域,并说明理由.