在直角坐标系中,动点
与定点
的距离和它到定直线
的距离之比是
,设动点
的轨迹为
,
是动圆
上一点.
(1)求动点的轨迹
的方程;
(2)设曲线上的三点
与点
的距离成等差数列,若线段
的垂直平分线与
轴的交点为
,求直线
的斜率
;
(3)若直线与
和动圆
均只有一个公共点,求
、
两点的距离
的最大值.
在长方体中,
为线段
中点.
(1)求直线与直线
所成的角的余弦值;
(2)若,求二面角
的大小;
(3)在棱上是否存在一点
,使得
平面
?若存在,求
的长;若不存在,说明理由.
某工厂拟建一座平面图为矩形,面积为的三段式污水处理池,池高为1
,如果池的四周墙壁的建造费单价为
元
,池中的每道隔墙厚度不计,面积只计一面,隔墙的建造费单价为
元
,池底的建造费单价为
元
,则水池的长、宽分别为多少米时,污水池的造价最低?最低造价为多少元?
如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:;(2)求直线
与平面
所成角的正弦值.
已知顶点在原点,焦点在
轴上的抛物线过点
.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于
、
两点,求证:
.
已知命题:任意
,
,命题
:函数
在
上单调递减.
(1)若命题为真命题,求实数
的取值范围;
(2)若和
均为真命题,求实数
的取值范围.