设函数,
(Ⅰ)求的定义域; (Ⅱ)求
的单调增区间和减区间;
(Ⅲ)求所有实数,使
对
恒成立.
(本小题满分12分)
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成锐二面角的大小.
(本小题满分12分)
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)若对于任意,不等式
恒成立,求实数t的取值范围.
(本小题满分12分)
已知函数的图象过点
.
(Ⅰ)求的值;
(Ⅱ)在△中,角
,
,
的对边分别是
,
,
.若
,求
的取值范围.
在直角坐标系中,点
,点
为抛物线
的焦点,
线段恰被抛物线
平分.
(Ⅰ)求的值;
(Ⅱ)过点作直线
交抛物线
于
两点,设直线
、
、
的斜率分别为
、
、
,问
能否成公差不为零的等差数列?若能,求直线
的方程;若不能,请说明理由.
已知函数,设曲线
在与
轴交点处的切线为
,
为
的导函数,满足
.
(1)求的单调区间.
(2)设,
,求函数
在
上的最大值;