游客
题文

某种家用电器每台的销售利润与该电器的无故障使用时间有关,每台这种家用电器若无故障使用时间不超过一年,则销售利润为0元,若无故障使用时间超过一年不超过三年,则销售利润为100元;若无故障使用时间超过三年,则销售利润为200元。已知每台该种电器的无故障使用时间不超过一年的概率为无故障使用时间超过一年不超过三年的概率为
(I)求销售两台这种家用电器的销售利润总和为400元的概率;
(II)求销售三台这种家用电器的销售利润总和为300元的概率;

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知向量a=(,cosωx),b=(sinωx,1),函数f(x)=a·b,且最小正周期为4π.
(1)求ω的值.
(2)设α,β∈,f=,f=-,求sin(α+β)的值.
(3)若x∈[-π,π],求函数f(x)的值域.

已知平面向量a=(,-1),b=.
(1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k关于t的关系式k=f(t).
(2)求函数k=f(t)在t∈(-2,2)上的最小值.

设a=(cosα,sinα),b=(cosβ,sinβ),若a-b=,θ为a与b的夹角.
(1)求θ的值.
(2)若f(x)=2sin(θ-x)cos(θ-x)+2sin2(θ-x),求f(x)的单调递增区间.

已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.
(1)求点C,D对应的复数.
(2)求平行四边形ABCD的面积.

已知向量=,=,定义函数f(x)=·.
(1)求函数f(x)的表达式,并指出其最大值和最小值.
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号