已知椭圆经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线
的方程;
(Ⅲ)在椭圆上是否存在关于直线
对称的相异两点?
若存在,请找出;若不存在,说明理由.
在矩形ABCD中,AB=1,BC=a,现沿AC折成二面角D-AC-B,使BD为异面直线AD、BC的公垂线.
(1)求证:平面ABD⊥平面ABC;
(2)当a为何值时,二面角D-AC-B为45°
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.
(1)求证:CD⊥PD;
(2)求证:EF∥平面PAD.
已知双曲线2x2-2y2=1的两个焦点为F1,F2,P为动点,若|PF1|+|PF2|=4.
(1)求动点P的轨迹E的方程;
(2)求cos∠F1PF2的最小值.
如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且·=·.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知=λ1,=λ2,求λ1+λ2的值.