如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BD
AE,BD
BA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ)证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
(本小题满分12分)
已知数列{}为公差不为零的等差数列,
=1,各项均为正数的等比数列{
}的第1
项、第3项、第5项分别是、
、
.
(I)求数列{
}与{
}的通项公式;
(Ⅱ)求数列{}的前
项和.
已知数列中,
且
(
)。
(1)求,
的值;
(2)设,是否存在实数
,使数列
为等差数列,若存在请求其通项
,若不存在请说明理由。
设函数(其中
>0,
),且
的图象在y轴右侧的第一个最高点的横坐标为
.
(1)求的最小正周期;
(2)如果在区间
上的最小值为
,求a的值.
在中,
,
.
(Ⅰ)求的值;
(Ⅱ)设的面积
,求
的长.
已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个.
(1)从中任取1个球, 求取得红球或黑球的概率;
(2)列出一次任取2个球的所有基本事件;
(3)从中取2个球,求至少有一个红球的概率.