已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
如图所示,在正三棱柱中,底面边长为
,侧棱长为
,
是棱
的中点.
|
(Ⅰ)求证:平面
;
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
若圆过点
且与直线
相切,设圆心
的轨迹为曲线
,
、
为曲线
上的两点,点
,且满足
.
(1)求曲线的方程;
(2)若,直线
的斜率为
,过
、
两点的圆
与抛物线在点
处有共同的切线,求圆
的方程;
(3)分别过、
作曲线
的切线,两条切线交于点
,若点
恰好在直线
上,求证:
与
均为定值.
过轴上动点
引抛物线
的两条切线
、
,
、
为切点.
(1)若切线,
的斜率分别为
和
,求证:
为定值,并求出定值;
(2)求证:直线恒过定点,并求出定点坐标;
(3)当最小时,求
的值.