已知函数
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:
(本小题满分12分)
已知点
和直线
,作
垂足为Q,且
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点C的直线m与点P的轨迹交于两点
点
,若
的面积为
,求直线
的方
程.
(本小题满分12分)
已知定义在R上的函数
的图像关于原点对称,且x=1
时,f(x)取极小值
.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图像上是否存在两点,使得在此两点处的切线互相垂直?证明你的结
论.
(本小题满分12分)
设数列
为等差数列,且
,
,数列
的前
项和为
,
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,求数列
的前
项和
.
(本小题满分12分)
如图所示,在正三棱柱
中,底面边长为
,侧棱长为
,
是棱
的中点.
|
(Ⅰ)求证:
平面
;
的大小;
到平面
的距离.
(本小题满分12分)
将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体
(Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率;
(Ⅱ)从中任取2个小正方体,求2个小正方体涂上颜色的面数之和为4的概率。