如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.
(直接写出答案,不需要证明)
如图,已知反比例函数 的图象经过点 ,一次函数 的图象经过反比例函数图象上的点 .
(1)求反比例函数与一次函数的表达式;
(2)一次函数的图象分别与 轴、 轴交于 、 两点,与反比例函数图象的另一个交点为 点,连接 、 ,求 的面积.
某游乐场一转角滑梯如图所示,滑梯立柱 、 均垂直于地面,点 在线段 上,在 点测得点 的仰角为 ,点 的俯角也为 ,测得 、 间距离为10米,立柱 高30米.求立柱 的高(结果保留根号)
我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了 ,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为 、 、 、 、 、 六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:
(1)该班共有学生 人;
(2)请将条形统计图补充完整;
(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
如图,已知 , ,求证: .