如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于
处时,乙船位于甲船的北偏西
的方向
处,此时两船相距20海里.当甲船航行20分钟到达
处时,乙船航行到甲船的北偏西
方向的
处,此时两船相距
海里,问乙船每小时航行多少海里?
(本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(
cm).
(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[
(本小题满分12分)巳知函数.
(I)求函数的最小正周期及在区间
上的最大值和最小
值;
(II)若,求
的值.
(本小题满分12分)巳知定义域为R的函数是奇函数.
(I)求a,b的值;
(II)若对任意的,不等式
恒成立,求k的取值范围.
(本小题满分分)已知函数.
(I)若不等式的解集为
,求实数a的值;
(II)在⑴的条件下,求的最小值.
(本小题满分10分)记函数的定义域为4,
的定义域为B
(I)求集合A
(II)若,求实数a的取值范围.