某次运动会甲、乙两名射击运动员成绩如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个成绩;
(2)分别计算两个样本的平均数和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.
已知椭圆C:,在曲线C上是否存在不同两点A、B关于直线
(m为常数)对称?若存在,求出
满足的条件;若不存在,说明理由。
如图,直线与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:点的坐标为
;
(2)求证:;
(3)求的面积的最小值.
已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形,
(1)求椭圆的离心率;
(2)若焦点到同侧顶点的距离为,求椭圆的方程.
已知抛物线,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.
设是椭圆C:
的左、右焦点,过
的直线
与椭圆C相交于A、B两点,直线
的倾斜角为
,
到直线
的距离为
。
(1)求椭圆C的焦距。
(2)如果,求椭圆C的方程。