计算
.
画出函数y=-x2+1的图象
已知:如图,E,F分别是□ABCD的边AD,BC的中点.求证:AF=CE.
某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为 .设饲养室长为 ,占地面积为 .
(1)如图1,问饲养室长 为多少时,占地面积 最大?
(2)如图2,现要求在图中所示位置留 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多 就行了.”请你通过计算,判断小敏的说法是否正确.
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 测得教学楼顶部 的仰角为 ,教学楼底部 的俯角为 ,量得实验楼与教学楼之间的距离 .
(1)求 的度数.
(2)求教学楼的高 .(结果精确到 ,参考数据: ,
为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:
(1)本次接受问卷调查的同学有多少人?补全条形统计图.
(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.
某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费 (元 是用水量 (立方米)的函数,其图象如图所示.
(1)若某月用水量为18立方米,则应交水费多少元?
(2)求当 时, 关于 的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?
如图,某日的钱塘江观潮信息如图:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离 (千米)与时间 (分钟)的函数关系用图3表示,其中:“ 时甲地‘交叉潮’的潮头离乙地12千米”记为点 ,点 坐标为 ,曲线 可用二次函数 , 是常数)刻画.
(1)求 的值,并求出潮头从甲地到乙地的速度;
(2) 时,小红骑单车从乙地出发,沿江边公路以0.48千米 分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米 分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度 , 是加速前的速度).