如图 5,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形,其中A与A '重合,且BB'<DD'<CC'.
(1)证明AD'//平面BB'C'C,并指出四边形AB'C'D’的形状;
(2)如果四边形中AB'C'D’中,,正方形的边长为
,
求平面ABCD与平面AB'C'D’所成的锐二面角的余弦值.
( 14分)
已知椭圆C的中心为直角坐标系x0y的原点,焦点在轴上,它的一个项点到两个焦点的距离分别是7和1
(1)求椭圆C的方程
(2)若为椭圆C的动点,M为过P且垂直于
轴的直线上的点,
(e为椭圆C的离心率),求点M的轨迹方程,并说明轨迹是什么曲线。
已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆左顶点作直线l垂直于x轴
,若动点M到椭圆右焦点的距离比它到直线l的距离小4,求点M的轨迹方程.
过抛物线y2=4x的焦点F作直线l,交抛物线于A、B两点,若线段AB的中点的横坐标为3,求|AB|
(1)求抛物线在点(1,4)处的切线方程
(2)求曲线在点M(π,0)处的切线的斜率
求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。