游客
题文

已知三点 O ( 0 , 0 ) , A ( - 2 , 1 ) , B ( 2 , 1 ) ,曲线 C 上任意一点 M x , y 满足 M A + M B = O M · O A + O B + 2 .
(1)求曲线 C 的方程;
(2)动点 Q ( x 0 , y 0 ) ( - 2 x 0 2 ) 在曲线 C 上,曲线 C 在点 Q 处的切线为 1 ,问:是否存在定点 P 0 , t t < 0 ,使得 1 P A , P B 都不相交,交点分别为 D , E ,且 Q A B P D E 的面积之比是常数?若存在,求 t 的值。若不存在,说明理由。

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

观察下面一组组合数等式:



…………
(1)由以上规律,请写出第个等式并证明;
(2)随机变量,求证:.

正四面体边长为2.分别为中点.

(1)求证:平面
(2)求二面角的余弦值.

设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.

在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1,C2. 设点P的轨迹为
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?

已知数列的前项和为,对一切正整数,点都在函数的图象上.
(1)求
(2)求数列的通项公式;
(3)若,求证数列的前项和

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号