设函数
(Ⅰ)求的单调区间;(Ⅱ)求
的值域.
设函数方程f(x)=x有唯一的解,
已知f(xn)=xn+1(n∈N﹡)且
(1)求证:数列{}是等差数列;
(2)若,求sn=b1+b2+b3+…+bn;
(3)在(2)的冬件下,若不等式对一切n∈N﹡
均成立,求k的最大值.
已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线
的焦点.
(1)求椭圆C的方程;
(2)点P(2,3),Q(2,-3)在椭圆上,A、B是椭圆上位
于直线PQ两侧的动点,
(i)若直线AB的斜率为,求四边形APBQ面积的最大值;
(ii)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图所示,三棱柱ABC—A1B1Cl中,AB=AC=AA1=2,面ABC1⊥面AAlClC,∠AAlCl=∠BAC1=600,AC1与A1C相交于0.
(1)求证.BO上面AAlClC;
(2)求三棱锥C1—ABC的体积;
(3)求二面角A1—B1C1—A的余弦值.
设函数
(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.
在淮北市高三“一模”考试中,某校甲、乙、丙、丁四名同学,在学校年级名次依次为l,2,3,4名,如果在“二模”考试中的前4名依然是这四名同学.
(1)求“二模”考试中恰好有两名同学排名不变的概率;
(2)设“二模”考试中排名不变的同学人数为X,求X分布列和数学期望,