游客
题文

Rt△ABC与Rt△FED是两块全等的含30o、60o角的三角板,按如图(一)所示拼在一起,CB与DE重合.
求证:四边形ABFC为平行四边形
取BC中点O,将△ABC绕点O顺时针方向旋转到如图(二)中△位置,直线与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想.
在(2)的条件下,指出当旋转角为多少度时,四边形PCQB为菱形(不要求证明).

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

为增强学生的身体素质,我校坚持长年的全员体育锻炼,并定期进行体能测试,下图是将初三某班学生的立定跳远成绩(精确到0.1米)进行整理后,画出的频数分布直方图的一部分,已知从左到右第一、二、四、五组的频率分别是0.05,0.15,0.30,0.35,第三小组的频数为9人(共有5个小组).

(1)该班参加这次测试的学生有多少人?
(2)若成绩在2.0米以上(含2.0米)的为合格,问该班成绩的合格率是多少?
(3)这次测试中,该班学生成绩中位数落在哪一小组内?

如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD 的延长线于点E、F,BE=BP.

(1)若∠E=70度,求∠F的度数.
(2)求证:△ABD是等腰三角形.

解方程:

计算:

如图1,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB =" 2OA" = 4.

(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴lx轴均相切时点P的坐标.
(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG//y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号