在平面直角坐标系 x O y 中, F 是抛物线 C : x 2 = 2 p y ( p > 0 ) 的焦点, M 是抛物线 C 上位于第一象限内的任意一点,过 M , F , O 三点的圆的圆心为 Q ,点 Q 到抛物线 C 的准线的距离为 3 4 . (Ⅰ)求抛物线 C 的方程; (Ⅱ)是否存在点 M ,使得直线 M Q 与抛物线 C 相切于点 M ?若存在,求出点 M 的坐标;若不存在,说明理由; (Ⅲ)若点 M 的横坐标为 2 ,直线 l : y = k x + 1 4 与抛物线 C 有两个不同的交点 A , B , l 与圆 Q 有两个不同的交点 D , E ,求当 1 2 ≤ k ≤ 2 时, A B 2 + D E 2 的最小值.
已知角α的终边过点(3a-9,a+2)且cosα≤0,sinα>0,求角α的取值范围.
已知P(-2,y)是角α终边上一点,且sinα=-,求cosα的值.
求函数y=+的定义域.
设是定义在上的偶函数,其图象关于直线对称,对任意,都有. (I)设,求; (II)证明是周期函数.
定义在上的函数是减函数,且是奇函数,若,求实数的范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号