如图,从 , , , , , ,这6个点中随机选取3个点。
(Ⅰ)求这3点与原点 恰好是正三棱锥的四个顶点的概率;
(Ⅱ)求这3点与原点
共面的概率。
已知函数f(x)=In(1+x)-+
(
≥0)。
(1)当=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间。
(1)个人坐在一排
个座位上,问①空位不相邻的坐法有多少种?②
个空位只有
个相邻的坐法有多少种
?
(2) 的展开式奇数项的二项式系数之和为
,则求展开式中二项式系数最大项。
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层,每年能源消耗费用为8万元。设
f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
给定两个命题, P:对任意实数
都有
恒成立;Q:关于
的方程
有实数根.如果P∨Q为真命题,P∧Q为假命题,求实数
的取值范围.
已知函数,
(1)若函数的图象上有与
轴平行的切线,求
的取范围;
(2)若在
时取得极值,且
时,
恒成立,求
的取值范围。