游客
题文

设函数
(1)当时,求的极值;
(2)当时,求的单调区间;
(3)当时,对任意的正整数,在区间上总有个数使得成立,试求正整数的最大值。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围;
(Ⅲ)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

如图,从边长为的正方形铁皮的四个角各截去一个边长为的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度与底面正方形的边长的比不超过常数,问:取何值时,长方体的容积V有最大值?

如图,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥
平面ABCD, SA=AB=BC=2,AD=1.

(Ⅰ)求SC与平面ASD所成的角余弦;
(Ⅱ)求平面SAB和平面SCD所成角的余弦.

已知,试证:;并求函数)的最小值.

已知

(Ⅰ)若,求实数的值;
(Ⅱ)若的充分条件,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号