已知椭圆的长轴长为4,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(Ⅰ)(ⅰ)求椭圆的方程; (ⅱ)求动圆圆心
的轨迹方程;
(Ⅱ) 在曲线上有两点
,椭圆
上有两点
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知两动圆和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
求曲线的方程;
若的坐标为
,求直线
和
轴的交点
的坐标;
证明直线恒经过一定点,并求此定点的坐标.
本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.
某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前
个月的需求量
(万吨)与
的函数关系为
,并且前4个月,区域外的需求量为20万吨.
(1)试写出第个月石油调出后,油库内储油量
(万吨)与
的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定的取值范围.
本题共有2个小题,第(1)小题满分4分,第(2)小题满分10分.
设三角形的内角
所对的边长分别是
,且
.若
不是钝角三角形,求:
(1)角的范围;
(2)的取值范围.
如图,已知圆锥的底面半径为,点Q为半圆弧
的中点,点
为母线
的中点.若直线
与
所成的角为
,求此圆锥的表面积.
本题共有3个小题,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分7分.
各项均为正数的数列的前
项和为
,且对任意正整数
,都有
.
(1)求数列的通项公式;
(2)如果等比数列共有
项,其首项与公比均为
,在数列
的每相邻两项
与
之间插入
个
后,得到一个新的数列
.求数列
中所有项的和;
(3)如果存在,使不等式
成立,求实数
的范围.