如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16厘米,.
(1) 求⊙O的半径;
(2) 如果要将直线l向下平移到与⊙O相切的位置,
平移的距离应是多少?请说明理由.
如图,二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,且关于直线 对称,点 的坐标为 .
(1)求二次函数的表达式;
(2)连接 ,若点 在 轴上时, 和 的夹角为 ,求线段 的长度;
(3)当 时,二次函数 的最小值为 ,求 的值.
如图,已知 是 的直径,点 是 上一点,连接 ,点 关于 的对称点 恰好落在 上.
(1)求证: ;
(2)过点 作 的切线 ,交 的延长线于点 .如果 , ,求 的直径.
如图,已知一次函数 的图象与坐标轴交于 , 两点,并与反比例函数 的图象相切于点 .
(1)切点 的坐标是 ;
(2)若点 为线段 的中点,将一次函数 的图象向左平移 个单位后,点 和点 平移后的对应点同时落在另一个反比例函数 的图象上时,求 的值.
如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中 为下水管道口直径, 为可绕转轴 自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径 , 为检修时阀门开启的位置,且 .
(1)直接写出阀门被下水道的水冲开与被河水关闭过程中 的取值范围;
(2)为了观测水位,当下水道的水冲开阀门到达 位置时,在点 处测得俯角 ,若此时点 恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)
, , , , , ,
某文具店最近有 , 两款毕业纪念册比较畅销,近两周的销售情况是:第一周 款销售数量是15本, 款销售数量是10本,销售总价是230元;第二周 款销售数量是20本, 款销售数量是10本,销售总价是280元.
(1)求 , 两款毕业纪念册的销售单价;
(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本 款毕业纪念册.