已知圆及定点
,点Q是圆A上的动点,点G在BQ上,点P在QA上,且满足
,
=0.
(I)求P点所在的曲线C的方程;
(II)过点B的直线与曲线C交于M、N两点,直线
与y轴交于E点,若
为定值。
如图,在⊙O的直径AB的延长线上任取一点C,过点C引直线与⊙O交于点D、E,在⊙O上再取一点F,使.
(1)求证:E、D、G、O四点共圆;
(2)如果CB=OB,试求的值.
已知函数.
(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间.
甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7、0.6,且每次试跳成功与否相互之间没有影响,求:
(1)甲试跳三次,第三次才成功地概率;
(2)甲、乙两人在第一次试跳中至少有一人成功的概率;
(3)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
在数列{an}中,a1=,an+1=
,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
50 |
70 |
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?
(可能用到的公式:,
,其中
、
是对回归直线方程
中系数
、
按最小二乘法求得的估计值)