游客
题文

阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.
请你参考小明同学的思路,解决下列问题:
(1) 图2中∠BPC的度数为      
(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为       ,正六边形ABCDEF的边长为      

图1                       图2                    图3

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图是某小区的一个健身器材,已知 BC = 0 . 15 m AB = 2 . 70 m BOD = 70 ° ,求端点 A 到地面 CD 的距离(精确到 0 . 1 m ) .(参考数据: sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

如图1,在平面直角坐标系中,四边形 OABC 各顶点的坐标分别为 O ( 0 , 0 ) A ( 3 3 3 ) B ( 9 5 3 ) C ( 14 , 0 ) ,动点 P Q 同时从 O 点出发,运动时间为 t 秒,点 P 沿 OC 方向以1单位长度 / 秒的速度向点 C 运动,点 Q 沿折线 OA - AB - BC 运动,在 OA AB BC 上运动的速度分别为3, 3 5 2 (单位长度 / 秒),当 P Q 中的一点到达 C 点时,两点同时停止运动.

(1)求 AB 所在直线的函数表达式;

(2)如图2,当点 Q AB 上运动时,求 ΔCPQ 的面积 S 关于 t 的函数表达式及 S 的最大值;

(3)在 P Q 的运动过程中,若线段 PQ 的垂直平分线经过四边形 OABC 的顶点,求相应的 t 值.

如图1,将 ΔABC 纸片沿中位线 EH 折叠,使点 A 对称点 D 落在 BC 边上,再将纸片分别沿等腰 ΔBED 和等腰 ΔDHC 的底边上的高线 EF HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将 ABCD 纸片按图2的方式折叠成一个叠合矩形 AEFG ,则操作形成的折痕分别是线段     S 矩形 AEFG : S ABCD =   

(2) ABCD 纸片还可以按图3的方式折叠成一个叠合矩形 EFGH ,若 EF = 5 EH = 12 ,求 AD 的长;

(3)如图4,四边形 ABCD 纸片满足 AD / / BC AD < BC AB BC AB = 8 CD = 10 ,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 AD BC 的长.

如图,已知: AB O 的直径,点 C O 上, CD O 的切线, AD CD 于点 D E AB 延长线上一点, CE O 于点 F ,连接 OC AC

(1)求证: AC 平分 DAO

(2)若 DAO = 105 ° E = 30 °

①求 OCE 的度数;

②若 O 的半径为 2 2 ,求线段 EF 的长.

甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 O 点正上方 1 m P 处发出一球,羽毛球飞行的高度 y ( m ) 与水平距离 x ( m ) 之间满足函数表达式 y = a ( x - 4 ) 2 + h ,已知点 O 与球网的水平距离为 5 m ,球网的高度为 1 . 55 m

(1)当 a = - 1 24 时,①求 h 的值;②通过计算判断此球能否过网.

(2)若甲发球过网后,羽毛球飞行到与点 O 的水平距离为 7 m ,离地面的高度为 12 5 m Q 处时,乙扣球成功,求 a 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号