游客
题文

阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
(2)归纳:考察点的个数和可连成直线的条数发现:如下表

点的个数
可作出直线条数
2
1=
3
3=
4
6=
5
10=
……
……
n

(3)推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即
(4)结论:
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出      个三角形;
当仅有4个点时,可作出      个三角形;
当仅有5个点时,可作出      个三角形;
……
(2)归纳:考察点的个数n和可作出的三角形的个数,发现:(填下表)

点的个数
可连成三角形个数
3
 
4
 
5
 
……
 
n
 

(3)推理:                             (4)结论:

科目 数学   题型 解答题   难度 较易
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,已知 AB O 的直径,点 C 是圆上异于 A B 的一点,连结 BC 并延长至点 D ,使 CD = BC ,连结 AD O 于点 E ,连结 BE

(1)求证: ΔABD 是等腰三角形;

(2)连结 OC 并延长,与以 B 为切点的切线交于点 F ,若 AB = 4 CF = 1 ,求 DE 的长.

如图,一次函数 y = kx + b 的图象与反比例函数 y = m x ( x < 0 ) 的图象相交于点 A ( - 3 , n ) B ( - 1 , - 3 ) 两点,过点 A AC OP 于点 C

(1)求一次函数和反比例函数的表达式;

(2)求四边形 ABOC 的面积.

如图, AB CD 两幢楼地面距离 BC 30 3 米,楼 AB 高30米,从楼 AB 的顶部点 A 测得楼 CD 的顶部点 D 的仰角为 45 °

(1)求 CAD 的大小;

(2)求楼 CD 的高度(结果保留根号).

在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习.参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.

(1)本次接受调查的学生有  名;

(2)补全条形统计图;

(3)根据调查结果,若本校有1800名学生,估计有多少名学生参与任课教师在线辅导?

如图,在 ΔABC 中,点 D 是边 BC 的中点,连结 AD 并延长到点 E ,使 DE = AD ,连结 CE

(1)求证: ΔABD ΔECD

(2)若 ΔABD 的面积为5,求 ΔACE 的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号