某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
![]() |
![]() |
第二组 |
![]() |
![]() |
![]() |
第三组 |
![]() |
![]() |
![]() |
第四组 |
![]() |
![]() |
![]() |
第五组 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(1)求、
、
的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这
名学生中随机抽取
名学生与张老师面谈,求第三组中至少有
名学生与张老师面谈的概率
已知函数,
.
(1)求函数的最小正周期和值域;
(2)若,且
,求
的值.
已知函数在点
处的切线方程为
.
(1)求、
的值;
(2)当时,
恒成立,求实数
的取值范围;
(3)证明:当,且
时,
.
已知数列的前
项和为
,且
,对任意
,都有
.
(1)求数列的通项公式;
(2)若数列满足
,求数列
的前
项和
.
如图,在五面体中,四边形
是边长为
的正方形,
平面
,
,
,
,
.
(1)求证:平面
;
(2)求直线与平面
所成角的正切值.