电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
将日均收看该体育节目时间不低于40分钟的观众称为"体育迷"。
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料你是否认为"体育迷"与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的"体育迷"人数为
.若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
已知等差数列
中,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若数列
的前
项和
,求
的值.
设实数数列
的前
项和
满足
.
(Ⅰ)若
成等比数列,求
.
(Ⅱ)求证:对
有
.
如图,椭圆的中心为原点 ,离心率 ,一条准线的方程为
(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足
,其中
是椭圆上的点.直线
与
的斜率之积为-0.5.问:是否存在两个定点
,使得
为定值.若存在,求
的坐标;若不存在,说明理由.
设
的导数
满足
,其中常数
.
(Ⅰ)求曲线
在点
处的切线方程.
(Ⅱ)设
.求函数
的极值.
某市公租房的房源位于
三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(Ⅰ)恰有2人申请
片区房源的概率;
(Ⅱ)申请的房源所在片区的个数的
分布列与期望.