(12分)用简单随机抽样从含有8个个体的总体中抽取一个容量为2的样本.问:
①总体中的某一个体在第一次抽取时被抽到的概率是多少?
②个体在第1次未被抽到,而第2次被抽到的概率是多少?
③在整个抽样过程中,个体被抽到的概率是多少?
已知椭圆及直线
.
(1)当直线与椭圆有公共点时,求实数的取值范围.
(2)求被椭圆截得的最长弦所在直线方程.
求以椭圆的顶点为焦点,焦点为顶点的双曲线方程,并求出其离心率.
(提示:1、12、13、14班同学请完成试题(B),其他班级同学任选试题(A)或(B)作答)
(A) 已知点A(2,3),B(5,4),C(7,10)及,试问:
(1)t为何值时,P在第三象限?
(2)是否存在D点使得四边形ABCD为平行四边形,若存在,求出D点坐标.
(B) 已知平行四边形ABCD,对角线AC与BD交于点E,,连接BN交AC于M,
(1)若求实数λ.
(2)若B(0,0),C(1,0),D(2,1),求M的坐标
在△ABC中,角A,B,C的对边分别为a,b,c,已知
(1)求角B的大小
(2)若,试确定△ABC的形状.
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积.