(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒.当你到达路口时,求不是红灯的概率.
(2)已知关于x的一元二次函数设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
,求函数
在区间[
上是增函数的概率.
(本小题满分14分)
(1)设集合A={},B={
},求集合
,
;
(2)已知集合,
, 求非零实数
的值。
(本小题满分16分)
已知函数,
(1)若在
上的最大值为
,求实数
的值;
(2)若对任意,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
(本小题满分16分)
已知椭圆的离心率为
,一条准线
.
(1)求椭圆的方程;
(2)设O为坐标原点,是
上的点,
为椭圆
的右焦点,过点F作OM的垂线与以OM为直径的圆
交于
两点.
①若,求圆
的方程;
②若是l上的动点,求证:点
在定圆上,并求该定圆的方程.
(本题满分16分)
如图,开发商欲对边长为的正方形
地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路
(点
分别在
上),根据规划要求
的周长为
.
(1)设,求证:
;
(2)欲使的面积最小,试确定点
的位置.
(本小题满分14分)
若a、b、c是△ABC三个内角A、B、C所对边,且,
(1)求;(2)当
时,求
的值。