为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,湖州市决定从2010年12月1日起,在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
类型 |
占地面积/m2 |
可供使用幢数 |
造价(万元) |
A |
15 |
18 |
1.5 |
B |
20 |
30 |
2.1 |
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼.
(1)满足条件的建造方案共有几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.
(10分) 如图,已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点。
(1)求抛物线的解析式及顶点P的坐标;
(2)求A、B两点的坐标;并求当x为何值时,y>0?
(3)设PB交y轴于C点,求线段PC的长。
(8分)如图,AB、CD为⊙O内两条相交的弦,交点为E,且AB=CD。则以下结论中:①AE=EC②AD=BC③BE=EC④AD∥BC, 正确的有。试证明你的结论。
(8分)如图,A、B两点在函数的图象上.(1)求
的值及直线AB的解析式; (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)中所有格点的坐标。
(本题14分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
(本题14分)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.