(本题12分)已知等比数列{an}的公比q=3,前3项和S3=.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=处取得最大值,且最大值为a3,
求函数f(x)的解析式.
已知函数
(1)求不等式的解集;
(2)若关于的不等式
恒成立,求实数
的取值范围.
设函数
(1)设,
,证明:
在区间
内存在唯一的零点;
(2)设,若对任意
,有
,求
的取值范围.
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度
元计费,每月用电超过
度时,超过部分按每度
元计费,每月用电超过
度时,超过部分按每度
元计费.
(1)设每月用电度,应交电费
元,写出
关于
的函数;
(2)已知小王家第一季度缴费情况如下:
月份 |
1 |
2 |
3 |
合计 |
缴费金额 |
87元 |
62元 |
45元8角 |
194元8角 |
问:小王家第一季度共用了多少度电?
已知函数
(1)判断函数在
上的单调性,并用定义加以证明;
(2)若对任意,总存在
,使得
成立,求实数
的取值范围.
已知函数
(1)令,求
关于
的函数关系式及
的取值范围;
(2)求函数的值域,并求函数取得最小值时的的值.