已知函数
(1)判断函数在
上的单调性,并用定义加以证明;
(2)若对任意,总存在
,使得
成立,求实数
的取值范围.
已知函数
(其中).
(1)求函数的最小正周期;
(2)若点在函数
的图像上,求
已知椭圆:
过点
,上、下焦点分别为
、
,
向量.直线
与椭圆交于
两点,线段
中点为
.
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段
所围成的平面区域(含边界)为
,若曲线
与区域
有公共点,试求
的最小值.
已知四棱锥的底面
是直角梯形,
,
,侧面
为正三角形,
,
.如图所示.
(1) 证明:平面
;
(2) 求四棱锥的体积
.
在直三棱柱中,
(1)求异面直线与
所成角的大小;
(2)求多面体的体积。
在长方体中,
,过
、
、
三点的平面截去长方体的一个角后,得到如图所示的几何体
,且这个几何体的体积为
.
(1)求棱的长;
(2)若的中点为
,求异面直线
与
所成角的大小(结果用反三角函数值表示).