深化理解(本小题满分9分)
如图,在平面直角坐标系中,点C的坐标为(0,4),A是轴上的一个动点,M是线段AC的中点.把线段AM进行以A为旋转中心、向顺时针方向旋转90°的旋转变换得到AB.过B作
轴的垂线、过点C作
轴的垂线,两直线交于点D,直线DB交
轴于一点E.
设A点的横坐标为,
(1)若=3,则点B的坐标为 ▲ ,若
=-3,,则点B的坐标为 ▲ ;
(2)若>0,△BCD的面积为
,则
为何值时,
?
(3)是否存在,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时
的值;若不存在,请说明理由.
如图所示,
A、B两城市相距100 km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东
和B城市的北偏西
的方向上,已知森林保护区的范围在以P点为圆心,50 km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:
)
解不等式组
计算:
如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6 cm,求BE的长.
(10分) 如图①,一个无盖的正方体盒子的棱长为6厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)
(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1.昆虫乙如果沿路径A→E→Cl 爬行 , 那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)
(2)如图②,假设昆虫甲从顶点C1以1厘米/秒的速度沿盒子的棱C1D1向D1爬行,同时昆虫乙从顶点A以2.5厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?