一次兴趣调查,共调查了1000名学生,其中男女生各500名,喜欢数学的男260名,喜欢数学的女生有220名.
(1)根据以上数据作出2×2列联表
(2)运用独立性检验思想,判断喜欢数学与性别是否有关系?(要求达到99.9%才能认定为有关系)
参考数据与公式:
临界值表
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
如图,已知圆,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
已知四棱锥的底面是平行四边形,
,
,
面
,
且.若
为
中点,
为线段
上的点,且
.
(1)求证:平面
;
(2)求PC与平面PAD所成角的正弦值.
![]() |
在锐角△ABC中,角的对边分别为
,且
.
(1)确定角C的大小;
(2)若,且△ABC的面积为
,求
的值。
已知数列{ }、{
}满足:
.
(1)求
(2)证明:数列{}为等差数列,并求数列
和{
}的通项公式;
(3)设,求实数
为何值时
恒成立.
在△ABC中,AB=3,AC边上的中线BD=,
(1)求AC的长;
(2)求sin(2A-B)的值.