(满分12分)设是抛物线
(p>0)的内接正三角形(
为坐标原点),其面积为
;点M是直线
:
上的动点,过点M作抛物线的切线MP、MQ,P、Q为切点.
(1)求抛物线的方程;
(2)直线PQ是否过定点,若过定点求出定点坐标;若不过定点,说明理由;
(3)求MPQ面积的最小值及相应的直线PQ的方程.
一辆货车的最大载重量为吨,要装载
、
两种不同的货物,已知装载
货物每吨收入
元,装载
货物每吨收入
元,且要求装载的
货物不少于
货物的一半.请问
、
两种不同的货物分别装载多少吨时,载货得到的收入最大?并求出这个最大值.
已知:等差数列{}中,
=14,前10项和
.
(1)求;
(2)将{}中的第2项,第4项,…,第
项按原来的顺序排成一个新数列,求此数列的前
项和
.
已知的周长为
,且
.
⑴.求边的长;
⑵.若的面积为
,求角
的度数
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长。
甲、乙各进行一次射击,若甲、乙击中目标的概率分别为0.8, 0.7.求下列事件的概率:
(1)两人都击中目标;
(2)至少有一人击中目标;
(3)恰有一人击中目标。