(满分12分)设是抛物线
(p>0)的内接正三角形(
为坐标原点),其面积为
;点M是直线
:
上的动点,过点M作抛物线的切线MP、MQ,P、Q为切点.
(1)求抛物线的方程;
(2)直线PQ是否过定点,若过定点求出定点坐标;若不过定点,说明理由;
(3)求MPQ面积的最小值及相应的直线PQ的方程.
已知函数.
(1)求函数的单调区间;
(2)若函数满足:
①对任意的,
,当
时,有
成立;
②对恒成立.求实数
的取值范围.
我校某同学设计了一个如图所示的“蝴蝶形图案(阴影区域)”来庆祝数学学科节的成功举办.其中、
是过抛物线
焦点
的两条弦,且其焦点
,
,点
为
轴上一点,记
,其中
为锐角.
(1)求抛物线方程;
(2)当“蝴蝶形图案”的面积最小时求的大小.
今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) |
[15,25) |
[25,35) |
[35,45) |
[45,55) |
[55,65) |
[65,75] |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
6 |
9 |
6 |
3 |
4 |
(1)完成被调查人员的频率分布直方图;
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.
如图,四棱锥中,底面
是直角梯形,
平面
,
,
,
分别为
,
的中点,
.
(1)求证:;
(2)求二面角的余弦值.
已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈时,不等式f(1+xlog2a)≤f(x-2)恒成立,求实数a的取值范围.