(满分12分)设是抛物线
(p>0)的内接正三角形(
为坐标原点),其面积为
;点M是直线
:
上的动点,过点M作抛物线的切线MP、MQ,P、Q为切点.
(1)求抛物线的方程;
(2)直线PQ是否过定点,若过定点求出定点坐标;若不过定点,说明理由;
(3)求MPQ面积的最小值及相应的直线PQ的方程.
已知数列中,
.
(1)求;
(2)求的通项公式;
(3)证明:
一动圆与圆
外切,同时与圆
内切.
(1)求动圆圆心的轨迹
的方程;
(2)在矩形中(如图),
分别是矩形四边的中点,
分别是
(其中
是坐标系原点)
的中点,直线
的交点为
,证明点
在轨迹
上.
一边长为的正方形铁片,铁片的四角截去四个边长均为
的小正方形,然后做成一个无盖方盒.
(1)将方盒的容积表示成的函数
;
(2)当是多少时,方盒的容积最大?最大容积是多少?
如图:在棱长为1的正方体—
中.
点M是棱的中点,点
是
的中点.
(1)求证:垂直于平面
;
(2)求平面与平面
所成二面角的平面角(锐角)
的余弦值.
设
(1)求的最大值及
的值;
(2)求的单调区间;
(3)若,求
的值.