为了迎接党的十八大的召开,某校组织了以“党在我心中”为主题的征文比赛,每位学生只能参加一次比赛,比赛成绩分A、B、C、D四个等级,随机抽取该校部分学生的征文比赛成绩进行分析,并绘制了如下的统计图表:
成绩等级 |
A |
B |
C |
D |
人数 |
60 |
x |
y |
10 |
占抽查学生总数的百分比 |
30% |
50% |
15% |
m |
根据表中的信息,解决下列问题:
(1)本次抽查的学生共有 ▲ 名;
(2)表中x、y和m所表示的数分别为x= ▲ ,y= ▲ ,m= ▲ ;
(3)补全条形统计图。
阅读并解答下列问题:我们熟悉两个乘法公式:①(+b)2=
2+2
b+b2;②(
-b)2=
2-2
b+b2.现将这两个公式变形,可得到一个新的公式③:
b=(
)2-(
)2, 这个公式形似平方差公式,我们不妨称之为广义的平立差公式。灵活、恰当地运用公式③将会使一些数学问题迎刃而解。
例如:因式分解:(b-1)2+(
+b-2)(
+b-2
b)
解:原式=+
-
=(b-1)2+(
+b-
b-1)2-(
b-1)2=(
-1)(b-1)2=(
-1)2(b-1)2你能利用公式(或其他方法)解决下列问题吗?
已知各实数,b,c满足
b=c2+9且
=6-b,求证:
="b"
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个。例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个。
(1)根据题意,完成下表:
车站序号 |
在第x车站启程时邮政车厢邮包总数 |
1 |
n-1 |
2 |
(n-1)-1+(n-2)=2(n-2) |
3 |
2(n-2)-2+(n-3)=3(n-3) |
4 |
|
5 |
|
… |
…… |
n |
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、
n表示)。
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
如图.AD、AH分别是△ABC(其中AB>AC)的角平分线、高线,M点是AD的中点,△MDH的外接圆交CM于E,求证∠AEB=90°。
抛物线的图像于x轴交于点M
,N
,且经过点A(0,1),其中
,过点A的直线
交x轴于C点,与抛物线交于点B(异于A点),满足△CAN是等腰直角三角形,且
,求解析式.
已知、
是关于x的一元二次方程
的两个实数根,使得
成立,求其实数
的可能值。