(本小题满分13分)
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:
(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求
的分布列及数学期望.
已知圆,
交于A、B两点;
(1)求过A、B两点的直线方程;
(2)求过A、B两点,且圆心在直线上的圆的方程.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金为多少元时,租凭公司有月收益最大?最大月收益是多少元?
已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若函数f(x)在x=-2处有极值,求f(x)的表达式;
(Ⅱ)若函数y=f(x)在区间[-2,1]上单调递增,求实数b的取值范围.
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,AB
AD,M为EC的中点,AF=AB=BC=FE=
AD
(1)证明平面AMD平面CDE;
(2)求二面角A-CD-E的余弦值