(本小题满分13分)
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:
(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求
的分布列及数学期望.
(本大题满分12分)函数在一个周期内的图象如图所示,
为图象的最高点,
、
为图象与
轴的交点,且
为正三角形
(1)求的值及函数
的值域;
(2)若,且
,求
的值.
(本小题满分13分)已知函数,其中
为常数,且
.
(1)若曲线在点
处的切线与直线
垂直,求
的值;
(2)若函数在区间
上的最小值为
,求
的值.
(本大题13分)如图,已知椭圆,点B是其下顶点,过点B的直线交椭圆C于另一点A(A点在
轴下方),且线段AB的中点E在直线
上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A、B的动点,且直线AP,BP分别交直线于点M、N,证明:OM·ON为定值.
数列,
,
满足:
,
,
.
(1)若数列是等差数列,求证:数列
是等差数列;
(2)若数列,
都是等差数列,求证:数列
从第二项起为等差数列;
(3)若数列是等差数列,试判断当
时,数列
是否成等差数列?证明你的结论.
(本小题满分12分)如图是图
的三视图,三棱锥
中,
,
分别是棱
,
的中点.
(1)求证:平面
;
(2)求三棱锥的体积.