(本小题满分12分)
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度
(千米/小时)的函数解析式可以表示为
已知甲、乙两地相距100千米.
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
如图,在三棱锥中,侧面
与侧面
均为边长为1的等边三角形,
,
为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)证明:;
(Ⅲ)求三棱锥的体积.
【改编】已知圆:
与
轴相切,点
为圆心.
(1)求的值;
(2)求圆在
轴上截得的弦长;
(3)若点是直线
上的动点,过点
作直线
与圆
相切,
为切点.当切线长最短时,求四边形
的面积.
【原创】如图,在三棱柱中,侧棱
底面
,
为
的中点,
.
(1)求证:平面
;
(2)若,求点
到平面
的距离.
过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(1)求证:平面PCD;
(2)求证:平面PCE⊥平面PCD.