如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线于
两点,圆心点
到抛物线准线的距离为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当的角平分线垂直
轴时,求直线
的斜率;
(Ⅲ)若直线在
轴上的截距为
,求
的最小值.
已知函数(其中
且
),
是
的反函数.
(1)已知关于的方程
在区间
上有实数解,求实数
的取值范围;
(2)当时,讨论函数
的奇偶性和增减性;
(3)设,其中
.记
,数列
的前
项的和为
(
),
求证:.
设无穷数列的首项
,前
项和为
(
),且点
在直线
上(
为与
无关的正实数).
(1)求证:数列(
)为等比数列;
(2)记数列的公比为
,数列
满足
,设
,求数列
的前
项和
;
(3)(理)若(1)中无穷等比数列(
)的各项和存在,记
,求函数
的值域.
已知双曲线(其中
).
(1)若定点到双曲线上的点的最近距离为
,求
的值;
(2)若过双曲线的左焦点,作倾斜角为
的直线
交双曲线于
、
两点,其中
,
是双曲线的右焦点.求△
的面积
.
(1)设、
是不全为零的实数,试比较
与
的大小;
(2)设为正数,且
,求证:
.
《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.
按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.
(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)